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Introduction 

This paper introduces what the authors believe to be the correct definition of the 

kernel of a monoid morphism a, : M+ N. This kernel is a category, constructed 

directly from the constituents of 9. In the case of a group morphism, our kernel is 

a groupoid that is divisionally equivalent to the traditional kernel. 

This article is a continuation of the work in [8]. The thesis of [8] is that categories, 

as generalized monoids, are essential ingredients in monoid decomposition theory. 

The principal development in [S] was the introduction of division, a new ordering 

for categories, which extend the existing notion for monoids. Since its introduction 

in [3], division has proved to be the ordering of choice for monoids. This extension 

of division to categories allows for the useful comparison of monoids and categories. 

A strong candidate for the title ‘kernel’ was introduced in [8]. This candidate is 

also a category and is called the derived category of 9. The derived category opera- 

tion and the wreath product of monoids are shown to have an adjoint-like relation- 

ship. This relationship is summed up in the Derived Category Theorem [8, Theorem 

5.21. The derived category has its origins in [6], where it appears as the derived 

semigroup. 

The kernel construction of this paper is an improvement over the derived category 

for a variety of reasons. First, it is smaller in the divisional sense. Second, it is a 

reversal invariant construction. Third, it combines more effectively with classical 

structure theories. For example, when applied to surmorphisms that cannot be 

further factored, the kernel has a particularly simple form. This leads to important 

decomposition theorems for finite monoids. 
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A new product, the block product, is introduced to complement the kernel con- 

struction. The kernel and block product have the same adjoint-like relationship as 

the derived category and the wreath product. The wreath product is a specific form 

of the semidirect product; the block product is derived similarly from a two-sided 

semidirect product, called a double semidirect product. 

The block product is an improvement over the wreath product for the following 

reasons. First, it is larger in the divisional sense. Second, it is a reversal invariant 

construction. Third, it admits a prime decomposition theorem for finite monoids 

that is an improvement over the wreath product version of [3]. 

The paper may be logically divided into two parts, based on cardinality. Sections 

1, 5-7 deal with arbitrary monoids and categories. Sections 2-4 treat finite monoids 

and categories. 

The kernel of a relation v, : M-t N of monoids is introduced and its basic proper- 

ties developed in Section 1. A relation of monoids is a relation whose graph 

# cp = {(m, n): n E mv} is a submonoid of Mx N. This concept includes morphism 

and division. 

The kernel provides the foundation for a prime decomposition theorem of finite 

relations of monoids. This is the subject of Sections 2-4. The result (Theorem 3.1) 

states that every relation may be written as a composition of ‘primitive’ relations. 

A relation is primitive if its kernel bears a certain relationship to a simple monoid, 

that is, a monoid with no non-trivial homomorphic images. The finite simple 

monoids consist of the simple groups and the two element monoid U, = (1, O}. 

Section 2 introduces primitive relations and the notion of p-free relations. 

Section 3 states the central theorem, presents corollaries, and reduces the proof of 

the theorem to the case of maximal proper surjective morphisms (MPS). Section 4 

utilizes the classification of MPS’s that appear in [5] to prove the theorem. This 

proof is a synthesis of the classical structure theories of finite monoids, and the 

more recent category developments of [8]. 

Starting with Section 5, we again treat arbitrary monoids. Section 5 develops ad- 

dition properties of the kernel. Section 6 introduces the double semidirect product, 

which generalizes the semidirect, reverse semidirect, and triple products. Theorem 

6.2 establishes the deep connection between the kernel and the double semidirect 

product. 

Section 7 introduces the block product, which is a specific instance of a double 

semidirect product. The Kernel Theorem (Theorem 7.4) states the connection between 

the kernel and the block product. Theorems 6.2 and 7.4 combine to establish an 

adjoint-like relationship between these two concepts. 

The main body of this paper is written with the assumption that certain (standard) 

facts about finite monoids and semigroups are understood. It is also assumed in the 

body of the text that the concepts of division and relational morphism are under- 

stood. Two appendices are provided with additional background information and 

exposition to fill this gap. 

An equivalence relation on categories is used here and in [8] that differs from the 
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‘natural equivalence’ of standard category theory. Our equivalence derives from 

division. We say categories are (divisionally) equivalent (and write S- T) if they 

divide each other. Divisional equivalence is broader than natural equivalence. Please 

see [8, Section 31 for a discussion of this subject. For a good category theory source, 

MacLane’s [4] is recommended. 

A few comments about notation used in this paper need to be made. Categories 

are treated here as algebraic objects rather than classifying tools for mathematical 

structures. For this reason, the term ‘morphism’ is not used as a synonym for 

‘arrow’, but is synonymous with the term ‘functor’. In other words, a morphism 

is an arrow in the category of categories and functors. Another variant is the nota- 

tion S(c, c’), which means the horn-set Homs(c, c’) of category S. This notation is 

used to suggest an algebraic setting and to reduce subscripting. 

Throughout this paper we will be treating functions of two variables, and all the 

functions to be encountered will have a property which could be called ‘acting in 

the middle’. We, therefore, adopt the following notation. Let 

F:Xx Y-+Z 

be a function of two variables. Rather than writing (x, y)F or F(x, y) for the value 

obtained by applying F to (x, y), we shall use the notation xFy. This notation enjoys 

the property of being parenthesis-free. It also allows for a natural way of expressing 

the essential ideas of the kernel, the double semidirect product and the block 

product. 

Due to length considerations, this is Part One of a two part paper. Part Two 

applies the results of this paper in a variety setting. 

1. The kernel 

Let M and N be monoids. A relation of monoids v, : M+ N is a set relation with 

the property that its graph 

#a,={(rn,n): rlErn9) 

is a submonoid of MX N. Equivalently, cp : M-t N is a relation of monoids if 

1 E 1~ and mpm’y,L (mm’)a, 

for all m, m/EM. Evidently, the inverse of a relation of monoids is also a relation 

of monoids. Morphisms and divisions of monoids are relations of monoids. 

Let a, : M-* N be a relation of monoids. We construct a category Kq, which we 

call the kernel of 9. This construction is best described in two steps: First, a category 

WV is constructed. Second, a congruence q on WP is constructed. The kernel of u, 

will be the quotient WV/q, and the associated quotient morphism will be denoted 

in: Wv+Kv,. 
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The objects of WV (and hence K,) are pairs of elements from the image, Mp, 

of q. That is, 

Obj(W,)={(n,n’): n,n’~Myl}. 

Because the objects are pairs, we find it convenient to adopt the following nota- 

tional conventions. When Y is a set, a boldface Y will denote the direct product 

Y x Y. A boldface y will denote a pair (yL, yR) E Y; for example, we have y’= 

(ye,_&). The subscripts ‘L’ and ‘R’ will be reserved for this purpose. 

The arrows of WV are derived from the elements of #cp. A pair (m, n) E #cp 

defines an arrow 

(1.1) (m,n):n+n’ 

if nrn = nt and nR = rink. Composition is that of #p. That is, given the arrow 

(1.2) (m’, n’) : n’+ n”, 

the product of (1.1) and (1.2) is the arrow 

(mm’,nn’):n-+n”. 

Since nLn = nt and ntn’= n[, we see that n,_nn’= nl. Similarly, na = nn’na. There- 

fore, this composition rule is well defined and associative. Note also that for each 

nEObj(Wp), the arrow (l,l):n +n is the identity arrow at n. Thus, WV is a 

category. 

Since a pair (m, n) E #cp may represent many arrows of Wp, it is important at 

times to use a less ambiguous notation for arrows. In these cases, the arrow (1.1) 

will be denoted by (nL,(nz, n),&). Such notation completely specifies the initial 

object, n =(nL,nn6), and the terminal object, n’=(nLn,n& of the arrow. It 

should be noted that for any nl,n2 EMV) and any (m,n) E #cp, there is an arrow 

(It,, (m, n), n2) in WV. For example, the arrow (m, n) : (1, n) + (n, 1) is always present 

in Wp when (m, n) E # 9. 
We now define the congruence q on WV. This is done by associating to each 

arrow (n,, (m, n), nk) : n + n’ a function (of two variables) 

[nL,(m,n),n~]:n,~-‘xnl;~-‘-M, 
(1.3) 

mL[nL, (m, n), nk]mk = m,mmk. 

Here we are using the notation for functions of two variables discussed in the in- 

troduction. The element mL belongs to nLp-’ and m6 belongs to &I$-‘. Two 

coterminal arrows of WV are equivalent (mod q) if they define the same function 

(1.3). 

We will show that q is a congruence by showing that it is both a right and a left 

congruence. To show that q is a right congruence, let (m,n),(m’,n’): n+n’ be co- 

terminal arrows that are equivalent (mod q), and let (m,, no): n’+ n” be an arrow 
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starting at object n’. Showing that the composite arrows (mm,, nno) and (m’mo, n/no) 

are equivalent (mod q) requires establishing the equation 

(1.4) mLmmom~ = m,m’mom~ 

for all (m,,mL)EnLq-’ xnicp-‘. Since moEnOq.-’ and non:=&, we have 

momi E n,p-’ c (non&-’ = nkp-‘. 

Equation (1.4) now follows from the assumption that the arrows (m, n) and 

(m’, n’) : n --t n’ are equivalent; that is, they define the same function (1.3). A dual 

argument is used to show that q is a left congruence. 

In summary, the kernel of IJI, denoted by Kv, is the quotient category W, 1~. The 

objects of Kq are pairs of elements in the image of 9; that is, 

Obj(K,) = M9. 

The arrows of Kv are the functions (1.3). The horn-sets of Kv are given by 

K&z, n’) = {[n,, (m, n), nk] : nLn = nt and nR = rink}.. 

Composition of consecutive arrows is given by the rule 

]nL, (m, n), &I]&, (m: 0, 4 = bL, (mm: nn’), 41 

and the identity arrow at object n is the function [nL, (1, l), na]. 

Note that while the arrows of K, are described as functions (1.3), the composi- 

tion in Kq is not function composition. The functions (1.3) do not compose. This 

differs from the case of the derived category, D,, where the arrows are functions, 

and composition in D, is function composition. The derived category is the 

category of a concrete category; the kernel does not seem to have such a description. 

Each object of K,, being a pair of elements in N, may be ‘evaluated’ by multi- 

plication. That is, we may consider the evaluation function 

19 : Obj(K,) + N, &=nLnn. 

It is interesting to note that this evaluation is constant along paths and connected 

components of Kv,. For, if there is an arrow (m, n) : n + n’ in WV, then by (1.1) we 

have 

n8 = nLnR = n&n;) = ntnk = n’8. 

Consequently, we may conclude that the category Kv has as a least as many con- 

nected components as there are elements in M9, the image of 9. 

Alternate notation for the arrow [nL, (m, n), nk] E K&z, n’) is 

[m,n] :n-+n’ 

or, when ambiguity is not a problem, simply [m,n]. This arrow is said to be 

represented by (m, n) E # 9. In general, an arrow of K, may be represented by 

many elements of #9. However, our first lemma shows that arrows of the form 
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[l, (m, n), 11 : (1, n) + (n, l), which always are present in K,, have unique represen- 

tatives. 

Lemma 1.1. Let cp : M-r N be a relation of monoids. 

(4 [l,(m,n),l]=[l,(m’,n’),l] * m=m’. 

(b) K,((l, 1))~ lp-‘. 

Proof. (a) If [l,(m,n), l]=[l,(m’,n’),l], then by (1.3), mlmmz=mlm’m2 for all 

m,,m2E lf~-‘. Setting m, = m2 = 1 yields m = m’. 
(b) 1~~’ is clearly a submonoid of M, and the function 

8: l~~‘+K,((l, l)), me= ]l,(m, l), 11 

is evidently a surjective morphism of monoids. In fact, because of (a), 6’ is an iso- 

morphism. 0 

A relation cp :X+ Y is injective if for all X,X/E X, p satisfies 

(1.5) XcpflX’y,#0 * x=x’. 

Equivalently, ~7 is an injective relation iff CJ-’ : Y-t X is a partial function. A rela- 

tion cp : X + Y is fully defined if xcp # 0 for all XE X. For example, a division 

p : M < N of monoids is a relation of monoids that is both injective and fully defined 

on M. Equivalently, cp : M+ N is a division iff p-’ : N+ M is a surjective partial 

function. 

A relational morphism of categories v, : S 0 T is a relation of categories whose 

object relation is a function and whose horn-set relations are fully defined. A mor- 

phism (functor) of categories is an example of a relational morphism. A relational 

morphism v is a division of categories if, further, each horn-set relation is injective. 

Note that category division, when restricted to monoids (categories with one object), 

coincides with monoid division. The reader should consult [8] for a full discussion 

of division of monoids and categories. 

Division defines a preorder on categories, and by the usual techniques, induces 

an equivalence relation on categories. We write S- T and say S is (divisionally) 

equivalent to T if both S < T and T< S. This equivalence relation is not the same 

as the natural equivalence of category theory, but is more general. See [8] for more 

details. Equivalent finite monoids are isomorphic; such cannot be said of equivalent 

finite categories. In fact, it is quite common for a finite category to be equivalent 

to one of its subcategories. Trivial categories (posets) provide an example of this 

fact, below. 

We call a category trivial if it has at most one arrow per horn-set, that is, if the 

category is a poset. If S is a trivial category, then the collapsing morphism S-t 1 is 
faithful, and thus is a division. On the other hand, 1 is a subcategory of S, and the 

inclusion morphism is a division. Thus S is trivial iff S- 1. 
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Proposition 1.2. A relation 9 of monoids is injective iff KIp is trivial. 

Proof. Assume that cp : M-+N is injective, and consider two coterminal arrows 

[m,n],[m’,n’]:n+n’ 

of KP. For any m,_ E nLyl-‘, we have mLm e (nLn)pel and m,_m’E (q_n’)q-‘. But 

n,n =nLn’=nt, so we have 

4 E (m,m)y,n(m,m’)cp. 

Since p is injective, we deduce from (1.5) that mLm = mLm’ for all m,_ E nLv-‘. It 

follows from (1.3) that [m,n] = [m’, n’]. This argument shows that K, has at most 

one arrow per horn-set, that is, Kq is a trivial category. 

Conversely, assume that KV is trivial, and let n E mylClm’yl. The pair (m, n) E #(p 
gives rise to the arrow 

tl, (m, n), 11 : (Ln) -+ 04 1) 

of KP. Similarly, (m’, n) E #v, defines [l, (m’, n), l] : (1, n) --t (n, 1). Since KV is trivial, 

we deduce that [ 1, (m, n), 1] = [ 1, (m’, n), 11. Lemma 1.1 states that in this case m = m’. 
Therefore, by (1.5), cp is an injective relation. 0 

At the opposite extreme, we have the collapsing morphism v, : AI-+ 1. In this case 

KV has one object, (1, l), so KV is the local monoid K,((l, 1)). Since M= lr~~‘, 

Lemma 1.1(b) proves 

Proposition 1.3. Let A4 be a monoid. If v, : M+ 1 is the collapsing morphism, then 
K,=M. 0 

The inverse of a collapsing morphism is an injective relation. Propositions 1.2 and 

1.3 combine to show that the kernel of a relation and the kernel of the inverse rela- 

tion can differ by an arbitrary amount. 

The two stages of the construction of the kernel, WP, then q: WV -+ K, , are often 

useful when establishing a category division of the form K, < V. The pattern that 

occurs is this: First, a relational morphism J+V : W+, d V is established. Then, since 

the inverse of the quotient morphism q is a relational morphism (actually a divi- 

sion), the composition q-lw : Kq + V defines a relational morphism. The second 

step is to show that V-~I,V is injective on each horn-set of K,. This establishes the 

division 

q-‘w:K,< V. 

The next topic, which shows how our kernel is related to the traditional group 

theory kernel, illustrates this procedure. 

Proposition 1.4. Let a, : G + H be the group morphism. Then K, - ker 9. 
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Proof. Using Lemma 1.1(b), we obtain 1~~’ < Kp. For the opposite inquality, we 

will construct an faithful morphism of categories 

In particular, 0 is a division. Since q-l : Kv -+ WV is also a division, the composition 

q-i8 : Kp < 1 cp-’ provides the reverse inequality. 

For each h E Gp, choose an element RE G with & = h. Then for each horn-set 

IV,,@, h ‘), define 

(1.6) 0: w&h’)+ 1q-1, (g, h)B = Erg(&)‘. 

Because h,h = ht, we have (firg(fiL)-‘)cp = h,h(h~)-’ = 1. Therefore, (1.6) is well 

defined. If (g, h)B = (g’, h’)B, then by cancellation, g =g’. Since h,h = ht = hr_h’, we 

also have h = h’. This shows that (1.6) is an injective function. An easy argument 

now shows 0 : WV -+ ker 9 to be an injective morphism of categories. 0 

In the case of group morphisms, Kv is actually a groupoid. That is, every arrow 

of Kv is invertible. The inverse of [hi, (g, h), h2] is [hih, (g-l, h-l), hh2]. However, 

with the exception of the kernels of collapsing morphisms, K. cannot be a con- 

nected groupoid. This is because, by earlier remarks, Kp has at least card Her con- 

nected components. Consider, for example, the identity function on Z,= { l,O}. 

The connected components of the kernel are { (0, 0), (1, l)} and { (0, l), (1, 0)} . In par- 

ticular, this means that Kp is not ‘naturally equivalent’ to ker ~1. Clearly however, 

Kv is a coproduct of connected groupoids that are naturally equivalent to ker cp. 

The derived category, D,, of a relation of monoids p : M-+ N was introduced in 

[8]. That construction provides the link between relations of monoids and the 

wreath product. We next show that the kernel is smaller than the derived category. 

To review, the objects of D, are the members of Mp, and the arrows of D,(n,, n2) 

are functions of the form 

-1 t~,,@4w~ly,-‘-%a, , n,n=n,, mIh(m,nN=m~m. 

Composition is given by [n,, (m, n)][n,n, (m’, n’)] = [n,, (mm’, WI’)], and the identity 

arrow at object n is [n, (1, l)]. See [8] for a complete discussion. 

Proposition 1.5. Let cp : M-t N be a relation of monoids. Then 

Proof. We first establish a morphism 8: WV + D, of categories. Define an object 

function 

e:Obj(W,)+Obj(D,), (n,, n,)e = nL 

and horn-set functions 

0: W,(n,n')+D,h,nh W,nP= b~,(m, n)l. 
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0 is easily seen to be a morphism. 
Composing q-’ with 0, we obtain the relational morphism 

q-‘B:K,QD,. 

Showing that q-‘O is injective on horn-sets will establish the assertion. 
Let (m, n), (m’, n’) E FV,(n, n’), and suppose that (m, n)t9 = (m’, n’)O. We must 

show that (m, n)z;l = (m’, n’)q, i.e., [q, (m, n), n;l] = [q, (m’, n’), &]. Let mL E nLv-’ 
and rnk E nip-‘. Since [nr, (m, n)] = [q, (m’, n’)], we have m,_m = mLrn’. Therefore, 
it follows that 

mLmmk = m,m’mk. 

The assertion follows from (1.3). Cl 

The kernel and the reversal operation enjoy a pleasant relationship. Given a rela- 
tion of categories a, : S--t T, the reverse relation cpe : Se + T@ is defined by 

cq+=cq9 on objects, 

se@ = (~q7)~ on arrows. 

Proposition 1.6. Let a, : M-, N be a relation of monoids. Then 

K@ = (K,)? 

Proof. The object function 

0 : Obj(K,) -+ Obj(K,,), (nL, nR)e= @RQ9 nL”) 

and the horn-set functions 

e:K,(n,n’)~K~B(n’e,ne), [nL, Cm, 4, die= he, Cm4 @I, +4 
combine to define a contravariant functor 8: K,-+ K,,. There results a covariant 
functor (i.e., a morphism) 

8: (KJ + K,e 

which, in fact, is an isomorphism. 0 

The remaining results of this section are stated without proofs, since their proofs 
are straight-forward. The first concerns the direct product. 

Proposition 1.7. Let vi: Mi+ N;, i= 1,2, be the relations of monoids with cor- 

responding kernels Ki. Then 

K,xK2=Kv 

where ~0 is the product relation 
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(m,,Q)Vl XV)2=((n,,nz): niErnjVi9 i= 1,2}. 

A similar result holds for arbitrary large products of relations. 0 

An admissible factorization (a, W, p) of a relation v, : M-t N of monoids is any 

factorization 

p=ff+p, (Y: W+M, p: W--N 

where W is a monoid, and a and /I are morphisms. An admissible factorization of 

note is the canonical factorization (p,,,_,, #q?, qN), where a?,$., and v)~ are the restric- 

tions of the projection morphisms @M: MX N-+M and @N: Mx N-t N. 

Proposition 1.8. Let (a, W, /?) be an admissible factorization for a, : M-+ N. Then 
Z$ is a quotient of Kg. If (a, # 9, p) is the canonical factorization for cp, then 
K,-KO. 0 

2. Finite simple monoids and P-free relations 

The scope of the discussions in the next three sections will be limited to finite 
monoids and finite categories. These sections assume certain standard facts about 

finite monoids and semigroups. The reader is directed to Appendix A for a discus- 

sion of these facts. 

A monoid Mf 1 is simple if M has no non-trivial congruences. Equivalently, M 
is simple if its only morphic images are M and 1. The monoid U, = { LO} is simple, 

and simple groups are, of course, simple monoids. 

Proposition 2.1. The finite simple monoids consist of (I, and the finite simple 

groups. 

Proof. Let M be a simple finite monoid that is not a group. Let G be the maximal 

subgroup of M, and let Z be the complement of G. Since M is finite, Z is an ideal. 

Since M is simple, the quotient morphism M *M/Z must be the identity; that is, 

Z is a singleton. Thus we may write M= GU { 0} . Now we may define the morphism 

M+ U,, g+ 1, o-o. 

Since this morphism must be an isomorphism, we have M= Ul. 0 

Semigroups cannot be avoided when dealing with monoids. An ideal of a monoid 

Mis generally a subsemigroup of, not a monoid in, M. When a, : M+ N is a relation 

of monoids and e E N is an idempotent, then ep-’ is generally a subsemigroup of 

M which is not a monoid. The latter situation causes us to expand our discussion 
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to include semigroups at this point. The interplay between monoid division and 

semigroup division is discussed in [8]. 

Simple monoids have the following important property: 

Proposition 2.2. Let o, : S + T be a morphism of semigroups, and let P < S, where 
P is a simple monoid. Then either P < T or P < ep-’ for some idempotent e E T. 

Proof. Suppose U, < S. Since S is finite, S has a copy of U, as a subsemigroup. 

Because U, is simple, either U,p- U,, in which case U, < T, or iJ,p is a singleton 

idempotent e, in which case U, < ecp-‘. 
Now let P be a simple group and suppose P < S. Since S is finite, there is a group 

G in S and a surjective morphism 19: G -+ P. Let e be the identity of the group Gp 

in T, and let N= ep-’ fl G. Then N is a normal subgroup of G, G/N= Gp < T and 

N < ep-‘. 

Let N’= NB. Then N’ is a normal subgroup of P, and P/N’ is a quotient of G/N. 

In terms of division we have P/N’ < G/N and N’ < N. Therefore, P/N’ < T and 

N’< e@‘. Now, since P is simple, either P/N’= P, in which case P-P/N’ < T, or 

N’=P, in which case P=N’<ep,‘. 0 

Corollary 2.3. Let P be a simple monoid, and let S and T be semigroups. Then 

P<SxT * P<SorP<T. 

Proof. Assume that P divides S x T, but that P does not divide T. Let II : S x T-+ T 
be the projection. Then by Proposition 2.2, P< en-1 for some idempotent eE T. 
Furthermore, the map 

elr -‘+S, (s,e) + s 

is an injection. Therefore, P< S. 0 

Let P be a simple monoid. A semigroup S is called P-free if P does not divide 

S. More generally, let 9 be a collection of simple monoids. Then a semigroup S is 

g-free if no member of 9 divides S, that is, S is P-free for each PE 9’. 
It should be noted that for the sake of this definition, the family 9 may as well 

be closed under domination. That is, if 9’ is any collection of simple monoids and 

9’= {Q simple: P < Q for some P E sl}, then a semigroup is g-free iff it is p/-free. 

Every semigroup is p-free when 9 = 0. On the other hand, when B= all simple 

monoids, then the Y-free semigroups are those semigroups whose monoids are 

trivial. This class is usually denoted by Ll. If 9 consists of all simple groups, then 

the Y-free semigroups are the aperiodic semigroups, that is, the semigroups with 

only trivial group divisors, 

For any 9, the collection of all p-free semigroups forms an S-variety. This collec- 

tion is clearly closed under division, and Corollary 2.3 shows that Y-free semi- 

groups admit finite direct products. 



238 J. Rhodes, B. Tilson 

p-free semigroups lead to useful classifications of monoid relations. Let P be a 

simple monoid. A relation ~1: M+ N of monoids is P-free if each of the subsemi- 

groups (ep-‘: e2 = eeN} of M is P-free. More generally, if 9 is a collection of 

simple monoids, then a relation a?: A4 -+ N is @-free if v, is P-free for each PE 9. 
Every relation is Y-free when 9=0. If 9 consists of all simple groups, then the 

Y-free relations are the aperiodic relations of monoids. When 9= all simple 

monoids, the g-free relations are relations that are both aperiodic and U,-free. We 

now establish important properties of Y-free relations. 

Proposition 2.4. Let (a, # cp, /3) be the canonicalfactorization of a relation v, : M-+ N. 
Then ~1 is g-free iff /3 is q-free. 

Proof. Let eeN be an idempotent. Since p=a-‘P, we have ecp-’ = (ep-‘)a. How- 

ever, ep-’ = {(m, e) E #v}, and a is the projection rc : Mx N-t M restricted to #p. 

Consequently, a : ep-’ + ep-’ is an isomorphism, and eyl-’ is g-free iff ep-’ is 9- 

free. 0 

Proposition 2.5. Let pl : M-M’ and v)~ : M --f M” be surjective morphisms. If the 
composition q1(p2 is p-free, then both q1 and (p2 are Y-free. 

Proof. Let 9 = qrp2, and let e be an idempotent in M”. Then ep-’ is g-free. Since 

(e~-‘)~, =eq;‘, we see that e@l <ey,-‘. Therefore, ep,’ is g-free, and conse- 

quently, v)~ is g-free. 

Let f EM’ be an idempotent. Then fp2 =e is an idempotent in M”, and 

fp;’ C eqz-‘. Since e@’ is @-free, it follows that cpl is g-free. 0 

Proposition 2.6. Let v, : M-+ N be a relation of monoids. Then a, is @free iff for 
each p-free subsemigroup N’ of N, the subsemigroup N’p--’ is @free. 

Proof. Assume a, is P-free, and let N’be a @free subsemigroup of N. Let (a, # 9, p) 
be the canonical factorization of 9. Then by Proposition 2.4, p is p-free. Suppose 

P < N’P-’ for some simple monoid P. Applying Proposition 2.2 to p : N’B-’ + N’, 

we see that either P < N’ or P < efl-’ for some idempotent e E N’. Since both N’ and 

p are g-free, P cannot belong to 9. Therefore, N’P-’ is p-free. Since NV-- = 

(N’/_-‘)a, it follows that N’y,-’ is B-free. The converse is immediate. 0 

Let cp : M-+ M’ and v/ : M’ + M” be q-free relations, and let e E M” be an idem- 

potent. Then et,-’ is Y-free and e(pv)-’ = (ey-‘)p-‘. Thus, by Proposition 2.6, 

e(pcl/)-’ is Y-free. This proves 

Proposition 2.7. g-free relations are closed under composition. 0 

We now introduce two classes of relations which we will consider ‘primitive’. 



These classes will be shown, in the next section, to generate all relations of monoids. 

We first present a useful lemma. 

Lemma 2.8. Let v,: M+ N be a relation of monoids, and suppose a monoid 
P < eyl-’ for some idempotent e E N. Then P divides a local monoid of KV . 

Proof. Since P < ev-‘, there is a monoid M’G ep-’ that P divides. Define 

function 

O:M’+K,(e,e), mt9 = [e, (m, e), e]. 

If mB = m’8, then by (1.3), amb = am’b for all a, b E ep-‘. In particular, if f is 

the 

the 

identity of M’, then m=fmf =fm’f=m’. Therefore, f3 is injective. Since mOm’6 
clearly equals (mm’)O, we see that 8 is an injective morphism of semigroups. There- 

fore, P < M’< K,(e, e). 0 

The first type of primitive relation is now introduced. A relation v, : M-r N will 

be called locally trivial if its kernel KV is a locally trivial category, that is, a category 

with trivial local monoids. The collection of all locally trivial categories is denoted 

Ll, and forms a C-variety. 

Recall that a C-variety is a collection of finite categories that admit division and 

finite direct products. If K is a category, then (K) denotes the C-variety generated 

by K. The smallest C-variety, (l), is the collection of all trivial categories, that is, 

those categories equivalent to 1. Proposition 1.2 showed that a relation has a trivial 

kernel iff the relation is injective. 

The next smallest C-variety is Ll. That is, if W is a C-variety, then either 

W=(l) or AC W. 

This fact is deep and is established in [8, Theorem 8.11. Consequently, if K is a 

locally trivial category that is not trivial, then (K) =A. 
In summary, if a relation a, is locally trivial, then either a, is an injective relation, 

or (K,) =A. 
The second type of primitive relation is now introduced. Let Q be a simple 

monoid. A relation v, : M-t N of monoids is primitive of type Q if 

(2.1) cp is not Q-free, and 

(2.2) &,E (Qh 

If v, is primitive of type Q, then by (2. l), Q < ey?-’ for some idempotent e E N. It 

follows from Lemma 2.8 that Q < K,. Combining this inequality with (2.2) gives us 

the following fact: 

(2.3) If a, is primitive of type Q, then (K,) =(Q). 

However, the converse is false; an example is provided in Example 2.11. 

In order to establish (2.2), it suffices to show that each local monoid of K, 
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belongs to (Q). In other words, we may replace (2.2) with 

(2.2’) Local monoids of KV belong to (Q). 

This equivalence is by no means automatic. It is based on results from [8] which may 

be summarized as follows: 

Theorem 2.9. Let Q be a simple monoid and let K be a category. Then 

K E (Q) iff each local monoid of K belongs to (Q). 0 

The Q= Ui case is deep and is based on work of Simon. The case when Q is a 

group is based on results of Therien. The original formulations of these ideas did 

not use the language of categories and category division. For the original references 

and the category formulations of these theorems, see 18, Example 15.61 for the U, 

case, and [8, Propositions 11.6 and 13.81 for the group case. 

A relation a, : M-t N of monoids will be called primitive if either ~JJ is locally trivial 

or v, is primitive of type Q, where Q is any simple monoid. The relationship between 

primitive relations and the notion of P-free is given in the next proposition. 

Proposition 2.10. Let q~ : M+ N be a relation of monoids. 
(a) If a, is locally trivial, then v, is P-free for all simple monoids P. 
(b) If a, is primitive of type Q and P is a simple monoid, then v, is P-free iff P 

does not divide Q. 

Proof. (a) If a, is locally trivial, the local monoids of KV are trivial. It follows from 

Lemma 2.8 that for each idempotent e E N, the monoid divisors of e9-l are trivial. 

Therefore, cp is P-free for all simple monoids P. 
(b) Let a, be primitive of type Q, and let P be a simple monoid. Then by (2.1), 

Q < ep-’ for some idempotent e E N. Therefore, if P < Q, v, can not be P-free. Con- 

versely, if a, is not P-free, then P < ecp-’ for some idempotent e E N. It follows from 

Lemma 2.8 that P divides Kq. Then by (2.2) we have 

P-X Qx... x Q (finite). 

Since P is a simple monoid, Corollary 2.3 implies that P< Q. 0 

Example 2.11. This example supports the remark following (2.3). Let A4 be the 

cyclic monoid defined by x4 =x3. Thus M= {1,x,x2,x3}. Consider the morphism 

0:M-+ U, defined by x13=0. Then 10-i= { I} and OK’= {x,x2,x3}, so 8 is P-free 

for every simple monoid P. In particular, this means that 0 is not primitive of type 

U,. We show that (KO) =(U,). 
We calculate each local monoid of KB. By (1. l), an arrow (m, n) E W, (nL, nR) 

must satisfy nLn = nL and nnR = nR. If either nL or na equals 1, then (1, I) is the 

only member of W, (nL, nR). It follows that each local monoid of KO is trivial except 
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possibly Z&(0,0). In this last case, every member of # 8 defines an arrow in 

W,(O, 0). To determine &(O, 0), we must consider the function [m, n] : OK’ x08-l 

for each (m, n) E # 13 as defined by (1.3). The function [ 1, l] maps (x’,xj) to xi+j, 

i, j= 1,2,3. On the other hand, for each k= 1,2,3, [xk, 01 is the constant function 

with value x3. It follows that Z&,(0,0)= U,. 

From the above calculations, we see that (i) every local monoid of KB belongs to 

(U,), and (ii) U, <K,. Using Theorem 2.9, we conclude that (K,)=(U,), even 

though 8 is not primitive of type U,. 

The morphism 8 : M+ U, is P-free for all simple monoids P, yet 8 is not locally 

trivial. We show that 6 can be factored into locally trivial morphisms. Let N= 

{ 1, y, y’} with y3 =y2. Then B can be written 8= &t9,, where 8r : M-t N is given by 

x6, =y, and where e2 : N-+ U, is given by yf3, = 0. An easy calculation shows that 

both 19~ and e2 are locally trivial. This is a glimpse of Theorem 3.1, upcoming. 

3. Prime decomposition of finite relations 

We now present our main result about relations. All monoids and categories in 

this section are assumed finite. 

Let v, : M-t N be a relation of monoids. A decomposition of a, is a representation 

of v, as a composition of relations 

where (i) the factors pi : Mi_ 1 -+ Mi are relations of monoids with Me =A4 and 

Mk= N, (ii) each factor, except for possibly pi, is fully defined, and (iii) each 

factor, except for possibly pk, is surjective. In other words, the domain of each 

factor coincides with the range of the previous factor in the decomposition. Of 

course, any composition of the form v,=qq ..a qk may, by restriction, be refined 

term by term to produce a decomposition of 9. 

For any collection 9 of simple monoids, we may consider the collection of all 

Y-free relations. Our result states that every relation in the collection has a decom- 

position within the collection with primitive factors. 

Theorem 3.1. Let cp : M-+ N be a relation of monoids, and let 9 be a collection of 
simple monoids. Then cp is g-free iff v, has a decomposition whose factors are 
primitive @free relations. 

Since Y-free relations are closed under composition (Proposition 2.7), one direc- 

tion of Theorem 3.1 is immediate. This section and the next are devoted to the proof 

of the other direction. We first present some important corollaries. 

Every relation is g-free when B = 0. Applying Theorem 3.1 to this case gives us 

the first corollary. 
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Corollary 3.2. Every relation of monoids has a decomposition whose factors are 
primitive relations. 0 

According to Proposition 2.10, a primitive relation that is Ur-free must either be 
locally trivial or must be primitive of type Q, where U, does not divide Q. Since U, 
divides no group, we obtain the following result from Theorem 3.1 when 9 = {U, }: 

Corollary 3.3. A relation cp: M+ N is U,-free iff o, has a decomposition whose 
factors are either locally trivial or primitive of type Q, Q a simple group. 0 

On the other hand, no non-trivial group divides U,. Thus, setting 9 to be all 
simple groups in Theorem 3.1 yields the following: 

Corollary 3.4. A relation cp : M-+ N is aperiodic iff q~ has a decomposition whose 
factors are either locally trivial or primitive of type U,. 0 

Finally, no primitive relation of type Q is P-free for all simple monoids P. Letting 
9 be all simple monoids gives us 

Corollary 3.5. A relation IJJ : M+ N is aperiodic and U,-free iff p has a decom- 
position whose factors are locally trivial. 0 

Another result of interest can be obtained from Corollaries 3.2, 3.3 and 3.4. 
Corollaries 3.3 and 3.4 show that every primitive relation is either aperiodic or 
U,-free. The next proposition then follows from Corollary 3.2. 

Proposition 3.6. Every relation of monoids has a decomposition whose factors are 
either aperiodic or U,-free relations. 0 

We now begin our proof of the decomposition portion of Theorem 3.1. A mor- 
phism cp : M+ N of monoids is proper if it is not injective. A morphism q~ : M-t N 
is an MPS (Maximal Proper Surmorphism) if (i) cp is proper, (ii) v, is surjective, and 
(iii) whenever a, has a decomposition q~ =qqq~~, where q1 and q2 are morphisms, 
then either cp, or qr2 is not proper. Clearly, every proper surjective morphism has a 
decomposition where each factor is an MPS. The next proposition reduces the proof 
of Theorem 3.1 to the MPS case. 

Proposition 3.1. (a) Zf q? is an MPS that is U,-free, then cp is a primitive morphism. 
(b) Zf (D is an MPS that is not U,-free, then v, has a decomposition p = OI+V, where 

0 is a primitive relation of type U,, and w is a locally trivial morphism. 

Proposition 3.7 is proved in the next section. We assume its truth for the time 
being, and complete the proof of Theorem 3.1. 
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Let v, : M-+ N be a Y-free relation of monoids, where 9 is a collection of simple 

monoids. We proceed to show that v, has a decomposition 

(3.1) p= y& . ..&S. nr0 

where y and 6 are injective relations and /3r, . . . , /3, are Y-free MPS’s. 

Let (a; # 9, p) be the canonical factorization of p. Then a, = a-‘/? is a decomposi- 

tion, and by Proposition 2.4, /I is a g-free morphism. Set y =a-‘; since a is a 

morphism, y is an injective relation. If p is injective, then set S=/3 and (3.1) is 

satisfied with n = 0. Otherwise, the morphism p has a decomposition /3 = p’a, where 

p’ : # 9 + A4q1 is a proper surjective morphism, and 6 : A4u, + N is the inclusion map. 

Clearly, a, /3’, and y are Y-free. 

Since /3’ is proper and surjective, it has a decomposition /3’=p, ... /3,, where each 

factor pi is an MPS. Furthermore by Proposition 2.5, each factor pi must be B- 

free. This establishes (3.1). 

Now using (3.1), it suffices to establish the assertion of Theorem 3.1 for g-free 

MPS’s. Thus, let v, be a @-free MPS. If o, is U,-free, then according to Proposition 

3.7, q is already primitive. If a, is not Ur-free, then p has a decomposition a, = By, 

where 8 is primitive of type U,, and I,V is locally trivial. But since cp is not Ur-free, 

Ur cannot belong to 9. Thus 9 consists of simple groups, and no member of 9 

divides U,. It follows from Proposition 2.10 that both 0 and w are Y-free. Thus 

~1 has a decomposition whose factors are primitive g-free relations. 0 

Before proceeding with the proof of Proposition 3.7, we present an example that 

shows the necessity of relations in this theory. Note that Proposition 3.7 does not 

state that every MPS is primitive. If that were the case, then there would be no 

reason for developing this theory beyond the morphism (function) level. The word 

‘relation’ could be replaced by ‘morphism’ everywhere in this section. And, in fact, 

this can be done for Corollaries 3.3 and 3.5. But it cannot be done in part (b) of 

Proposition 3.7, and thus, cannot be done in Theorem 3.1 and Corollaries 3.2 and 

3.4. We present an MPS that is not primitive. 

Example 3.8. Consider the monoid of all partial injective functions on two letters 

{x, y}, minus the permutation that interchanges the letters. This monoid, therefore, 

consists of the identity function, 1, and an ideal Z consisting of four partial injective 

functions with singleton domains and the empty partial function, 0. This monoid 

is aperiodic and often goes by the name B,. When the elements of Z are identified, 

one obtains the quotient morphism 

(3.2) ~P:B,+ U,, lq= 1, zv=o. 

Direct calculations reveal that v, is an MPS; no two elements of Z can be identified 

by a congruence without all the elements of Z being identified. Furthermore, since 

Z contains copies of U,, fp is not Ur-free. 

We will show that B2 <I$, . Since B2 is neither idempotent nor commutative, this 
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will show that K, does not belong to (U,). Nor is B, a group, so Kq cannot belong 

to (Q) for any simple group Q. In short, CJJ cannot be primitive if B2 <K,. 
We establish K,(O, 0) = B,. Note first that every pair (m, n) E #v, defines an arrow 

(0, (m, n), 0) of W,(O, 0). That is, W,(O, 0) = B,. Second, by the above remarks, the 

quotient q : WV + K, when restricted to B2 = W,(O, 0), is either an isomorphism or 

must identify all the elements of I. We show the latter cannot happen. Let 

4 b : {x, y} -+ {x, y} be given by 

xa=x, xb=y, 

ya=O, yb=0. 

According to (1.3), (a,O)q=(b,O)q iff mam’=mbm’ for all m~I=OqF’. However, 

letting m = m’= a, we see that aaa = a while aba = 0. This shows that q restricted to 

W,(O,O) is an isomorphism. 

Proposition 3.7(b) states that the MPS defined in (3.2) can be further decomposed 

into a relation 6’ followed by a morphism w, where c9 is primitive of type U, and v/ 

is locally trivial. Since u, is an MPS, B cannot be a morphism. 

4. The proof of Proposition 3.7 

Proposition 3.7 reduced the proof of Theorem 3.1 to the MPS case. In order to 

proceed, we will need facts about MPS’s that appear in [5]. In order to state these 

facts, we first introduce some notation. 

Let cp : M+ N be a relation of monoids, and let X and Y be subsets of M. We say 

that v, separates X and Y if Xvn Ycp = 0. Note that v, is injective on a subset X of 

M iff cp separates every pair of elements of X. 

Let J be a $-class of a monoid M. J partitions M into three disjoint subsets, A(J), 

J, and B(J), as follows: 

A(J)={mEM: m>J}, B(J)=M-A(J)-J. 

A(J) is the set of elements of M that are strictly above J in the $-ordering of M. 
B(J) is the set of elements that are not above J and not in J. Note that both JU B(J) 
and B(J) are ideals of M. 

A relation a, : M-t N of monoids is g-singular if there exists a&?-class J of M with 

the properties (i) rp is injective on M- J and (ii) cp separates J and A(J). If these con- 

ditions are met, then J is called a singular x-class of ~0. 

The following facts are proved in [5]: 

(4.1) 

(4.2) 

Every MPS is g-singular. 

Every MPS v, : M+ N is either injective on the X-classes of M or 

separates the X-classes of M. 

A third fact about MPS’s is needed here. Before presenting this fact, we state 
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some results from the classical structure theory of regular $-classes of finite 

monoids. See Appendix A, [7] or [l] for more details. 

Let A4 be a finite monoid, and let J be a regular g-class of M. Then each of the 

X-classes {Hi, . . . , H,,} of A4 in J are in 1 : 1 correspondence. In fact, let G be a 

maximal group of M in J with identity e. G is one of the H-classes of J. Then the 

1 : 1 correspondence can be stated as follows. For each ie { 1, . . . , n}, there exist 

elements a;, bi, ci, di E M satisfying 

(4.3) 
aiH;bi=G, CiGdi=Hi, dibi=e=aici, 

hb;di=h=cia;h VhEH;. 

Furthermore, since e is the identity of G, these elements may be chosen so that 

ai, d; E eMn J and bi, Ci E Me fl J. These facts are utilized in upcoming propositions. 

Lemma 4.1. Let v, : M+ N be an MPS. Then a, restricted to any maximal group in 

M is either injective or is an MPS of groups. 

Proof. Suppose G is a maximal group in A4 and v, is not injective on G. Let J be 

the g-class of A4 containing G; then J is regular and we may utilize (4.3). Further- 

more, since p is not injective on J, it follows that J must be a singular $-class of p. 

Let - be a congruence on G that refines ~0; that is, g-g’ implies gyl =g’p. 

Extend - to A4 by the rule 

(4.4) m-m’ 
iff m-m’or, for some iE{l,..., n>, 

m, m’E Hi and aimbi-aim’bi (in G). 

We will show that - is a congruence on M that refines p. Since v, is an MPS, this 

will mean that either - is the identity congruence or - coincides with 9. In par- 

ticular, this will show that v, restricted to G cannot be refined non-trivially; that is, 

cp restricted to G is an MPS of groups. 

The relation - is certainly an equivalence relation. We first show that - refines 

p. Let m-m’ with m #ml. Then m, m’E Hi for some i, and aimbi-aim’bi. Let 

g=aimbi and g’=aim’bi. Then since g-g’in G, we have gy,=g’p. But by (4.3), we 

have 

m = Cigdi and m’= cig’d, 

so it follows that myl=m’cp. Thus - refines p. 

Last, to show that - is a congruence on M, let m-m’ with m, m/Hi for some i, 

and let x, y E M. We must show that xmy - xm’y. Since m - m’, we have my, = m’p, 

and hence 

(4.5) (xmy)u, = (xm’r)p. 

Since v, is not injective on G, and since G is an X-class of M, it follows from (4.2) 

that v, separates the X-classes of M. Furthermore, a, is injective on M-J. From 

(4.5) we must conclude that either xmy=xm’y, in which case we are done, or xmy, 

xm’yeHj for some j. Assume the latter. According to (4.4) we need to establish 
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(4.6) ajxmybj-ajxm’ybj (in G). 

Since m, m’E Hi, we may write 

(4.7) ajxmybj = haimbih’, ajxm ‘ybj = hai m ‘bi h ’ 

where h =ajxci and h’=diybj. It follows from (4.3) that h and h’ belong to 
eA4eC GUB(J). However, because of (4.7), neither h nor h’ belong to B(J). Thus, 
h, h’E G and (4.6) follows from (4.7). This shows that - is a congruence and 
establishes the assertion. 0 

Let o : G-t H be an MPS of groups. Then ker cc) is a minimal normal subgroup 
of G, and by a well-known fact of group theory, must be a direct product of a 
Jordan-Holder factor, Q, of G. It follows from Proposition 1.4 that o is primitive 
of type Q. We extend this result to MPS’s that are not aperiodic. 

Proposition 4.2. Let v, : M + N be an MPS that is not aperiodic. Then v, is primitive 
of type Q, where Q is a Jordan-Holder factor of a maximal group in M. 

Proof. Since ~1 is not aperiodic, a, identifies some elements of a maximal group G 
of M. Let w denote p restricted to G. Then by Lemma 4.1, o is an MPS of groups, 
and kero-Qxa.. x Q for some Jordan-Holder factor of G. Since Q < ker CO, v, is 
not Q-free. In order to show that p is primitive of type Q, we must show that Kq 
belongs to (Q). Since Kq < D, (Proposition 1.5), and since ker o = Qx a.0 x Q, it 
suffices to show that D, < ker o. In light of Theorem 2.9, we need only show that 
every local monoid of D, divides ker o. 

Let no EN, and consider the monoid W= {(m, n) E # ~1: non = no}. The local 
monoid D,(no) is isomorphic to W/C, where = is the congruence 

(m,n)=(m’,n’) iff mom=mom’ VmoEnOqF1. 

It follows directly that if nov-’ is a singleton, then D,(no) is trivial. 
Let J be the g-class of Mcontaining G. Then J is regular and is a singular g-class 

of cp. It follows that if no does not belong to Jv, then nap-’ is a singleton and 
D,(no) is trivial. In particular, D,(no) < ker o. 

Thus, we may assume that no E Jp. Since v, is not injective on &-classes of A4, 
cp must separate %-classes. Thus nov-’ is contained in an Z-class of J. Applying 
the notation of (4.3) to J, we may conclude that novel c Hi for some i E { 1, . . . , n}. 
Define the function 

8: W+kerw, (m, n)f3 = dim’bi. 

To show that 0 takes its values in ker o, let m, E nop7-l. Since non = no, it follows 
that (mom)q = mop = no and mom E Hi. We may write, using (4.3), 

(4.8) aimombi= (aimobi)(dimbi). 
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From (4.3) we know that dimbiEeMec CUB(J), and (4.8) shows that only 
dimbiE G is possible. Furthermore, aimobi and aim0 mbiE G, SO we may apply p to 
(4.8) and conclude that dimbiE ker w. 

In order to show that 8 is a morphism, we need to establish the equation 
dimbidim’bi=dimm’bi. This will be done by proving that dimbidi=dim. Let 
moEnO~-l. Since m. E Hi, (4.3) shows that dil m. in the g-ordering of M. But 
since d&m,, it follows that d$?mo. Choose XE M SO that di =xmo. Then 

dimbidi=xmombidi 

= xmOm (because mom E Hi (4.3)) 

= dim. 

Therefore, 0: W-+ ker w is a morphism. 
To establish DV(no) < ker w, it suffices to show that if (m, n), (m’, n’) E W with 

(m, n)e = (m’, n’)8, then (m, n) E (m’, n’). Let m. E noq-‘. Then mom E nap-‘, so by 
(4.3) we may write 

mom=mobidimbidi=mobi(m,n)8di. 

Since (m, n)e = (m’, n’)B, it follows that mom = mom’. Therefore, D&r,) < ker w, 
and the assertion is established. 0 

The following lemma is needed for our next result: 

Lemma 4.3. Let ~0 : M-+ N be a morphism of monoids, and let J be a regulars-class 
of M. 

(a) If v, is aperiodic, then ~1 is injective on the &Sclasses of J. 
(b) If a, is U,-free, then p separates J and B(J). 

Proof. (a) Let G be a maximal group in J. Since a, is aperiodic, ~0 is injective on G. 
The 1 : 1 correspondence between G and any &-class in Jdiscussed in (4.3) establishes 
the assertion. 

(b) Let J be a regular g-class of M, and suppose that (p does not separate J and 
B(J). Then there are elements m E J, m’E B(J) such that ma,=m’p. Since J is 
regular, there is an idempotent eE J with earn. Thus, we can write e = ma for some 
aEM. Consider the element em’aee B(J). Since e is an idempotent, we see that 
(em’ae)q = ep. Let f be the idempotent that results from raising em’ae to a suffi- 
ciently high power. Then clearly, fu, = ea, and {e, f } is a copy of U, in M. There- 
fore, rp is not U,-free. 0 

Proposition 4.4. Let 9 : M+ N be a g-singular morphism of monoids. If ~0 is both 
aperiodic and U,-free, then p is locally trivial. 

Proof. Let KV(nL, nR) be a local monoid of KV, and let (m, n) E #a, with nLn = nL 
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and nna = na. To show that K&z,, na) is trivial, we must show that (m, n) and (1,l) 

define the same function (1.3). Equivalently, we must show 

(4.9) amb = ab 

for all aEnL(D-’ and bEnRp-‘. 
Let aEnLv_’ and bEnRV)-‘. The equations nL= nLfr and na=nna establish 

(4.10) ayl = (am)9 and bp = (mb)a, 

from which follows the equation 

(4.11) (ab)p = (amb)p. 

Suppose a E A(J). Since v, separates A(J) and J, (4.10) implies that am E A(J). Since 

p is injective on A(J), we conclude that a=am, from which (4.9) follows. If 

a E B(J), then since B(J) is an ideal, we have am E B(J). But v, is injective on B(J), 

so again a = am. We have shown that if a EM- J, then (4.9) holds. A dual argument 

proves that if bEM-J, then (4.9) holds. Finally, if both ab and amb belong to 

M-J, (4.11) implies (4.9). 

Therefore, we may assume a, b E J, and either ab or amb belongs to J. It follows 

that J must be a regular g-class. Since a, is Ui-free, Lemma 4.3(b) states that a, 

separates J and B(J). It follows that both ab and amb belong to J. We show that 

ab%amb. First we have a? ab and a? amb in the a-ordering of M. But since 

a,ab,ambE J, it follows that ab%?a&?amb. A dual argument shows that abSabm. 
Now since (ab)y,= (amb)y, and ab.X?amb, Lemma 4.3(a) shows that ab=amb. 

Therefore, (4.9) holds in all cases, so u, is locally trivial. 0 

We can now prove the first part of Proposition 3.7. Recall the statement: If an 

MPS v, : M-t N is U,-free, then v, is primitive. 

Proof of Proposition 3.7(a). The assertion follows directly from Propositions 4.2 

and 4.4 according to whether or not v, is aperiodic. If a, is aperiodic, then ~0 satiesfies 

the hypothesis of Proposition 4.4, and hence is locally trivial. If 9 is not aperiodic, 

then by Proposition 4.2, v, is primitive of type Q, where Q is a simple group. 0 

Before presenting the proof of Proposition 3.7(b), we state some other interesting 

corollaries of Proposition 4.4. If v, : M-+ N is $-singular and one of its singular 

g-classes is null, then CJJ must be both aperiodic and Ui-free. This follows from the 

fact that if feN is an idempotent, then fp-’ can contain at most one regular 

element of M. This proves 

Corollary 4.5. If (Q : M+ N is a $-singular morphism with a singular &?-class that 
is null, then v, is locally trivial. 0 

Corollary 4.6. Let M have a O-minimal null ideal N, and let rl: M+ M/N be the 
quotient. Then q is locally trivial. 0 
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Example 4.7. This example shows that the kernel KV cannot be replaced in Proposi- 

tion 4.4 by the derived category D, . Let M be the cyclic monoid defined by x3 =x2. 

Thus M= {1,x,x2}. Consider the morphism p : M-t CJ, defined by x0=0. a, is 

clearly an MPS that is both aperiodic and Ur-free, so by Proposition 4.4, K,E/~. 

The derived category D, has two local monoids, D,(l) and D,(O), and a direct 

calculation shows that D,(O) = U, . Hence D, does not belong to 11. 

We now present a proof of Proposition 3.7(b), which we restate as a separate pro- 

position. 

Proposition 4.8. Let a, : M+ N be an MPS that is not U,-free. Then q has a decom- 
position 

p=ev 

where 0 is primitive of type U,, and I+V is a locally trivial morphism. 

Proof. An MPS must be &?-singular, so let J be a singular g-class of p. Select a 

monoid Twith the property that T- {l} is in 1 : 1 correspondence with the B-classes 

in J. Choose a fixed correspondence, and denote the %-class corresponding to each 

aeT-1 by R,. 
A second piece of needed notation is the following: For each n EAT, let A 

denote the unique member of A(J) satisfying fiy,=n. This notation is possible 

because ~0 is injective on A(J). 
We construct the decomposition a, = f3v/ by means of a wreath product. Define a 

function 

h:M+ TON, mh = (f,, mv) 

where the function f, : N+ T is given by 

nf, = 
i 

a if rz~A(J)p, AmER,, 
1 otherwise. 

Let 19 : M+ To N be the relation of monoids generated by the function h. In other 

words, if m EM, 

me= (m,h . . . mkh: for each factorization m=m, . . . mk}. 

Thus, if m EM and (f, n) E me, then there is a factorization m = ml . . . mk so that 

(J;n)=m,h... m,h. Denoting m;h by (f;, m#), we deduce that n = mrp and 

(4.12) 

Here, the notation [n, f ] denotes the left action of n on the function f used to define 

the wreath product. Recall that the result is a function [n, f] : N-t T given by 

n’[n, f] = (n’n)_f. 
Next, define I,U : M8 -+ N to be the projection rc : To N+ N restricted to MO. Since 

(A n) E me implies that n = mcp, it follows that p = ,9v/. 
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We first establish that I,Y is locally trivial by showing that D, E 11. Let nL EN and 

let (f, n) EMB with nLn = nL. In order to show that the local monoid D&z,) is trivial, 

we must show that right multiplication by (f,n) on the set n,t,-’ is the identity 

map. That is, we must show that (fL, nL)(f, n) = (fL, nL) for each (fL, nL) E MB. 

Since we have 

(fL, nr)(f, n) = (fL + bL, fl, ~4 and nLn = nL, 

it suffices to show that the function [n,,f] is the identity function. That is, it 

suffices to show that (nonL)f= 1 for all no EN. 

Since (J; n) E me for some m EM, we may assume that f is given by the equation 

(4.12) associated with a factorization m = ml . . . mk, Let ni = mip, i = 1, . . . , k. Then 

n=n, . ..nk. and 

h$L)f= (nOnL)fi+(nOnLnl)f2+***+ @OnLnl.-- nk-l)fk. 

Suppose that (n,nL)f# 1. Then (nonL~i . . . n;-,)fi# 1 for some i= 1, . . . , n. This 

means that nOnLnl . . . nj_, eA(J)a, and nOnLnl . . . niEJp* Since v, separates A(J) 

and J, and since JUB(J) is an ideal of M, it follows that the complement of A(J)p 

is an ideal of N. This leads to the conclusion that nOnLnl . . . n,_, and nOnLnl . . . ni 

are not .!%?-equivalent. However, the calculation 

nonL = nonLn = nonLnl . . . nk 

shows otherwise. Thus we have arrived at a contradiction. It must be that [nL, f] 

is the identity function. Therefore, I,V is a locally trivial morphism. 

We now treat the relation 0. We first note that 8 is not U,-free. For if 0 were 

U,-free, then since v/ is Cr,-free, the composition By/ = 9 would be LT,-free, contrary 

to the hypothesis. To prove that 8 is primitive of type U,, it remains to show that 

K,E(U,). We first prove that 6’ is a $-singular relation that is injective on the 

.9-classes of M. 

Because p is $-singular and because v, = t9w, it follows easily that 0 is a g-singular 

relation with J as a singular g-class. Since 0 is injective on M-J, it suffices to 

show that 0 is injective on the %‘-classes of J. Let m E R, c J, and let (f, n) E me. 

We claim that lf =a. To show this, we may assume that m has a factorization 

m=m, . . . mk and that f is given by (4.12). Let j be the unique integer between 1 

and k satisfying 

ml . . . mj_l EA(J) and ml . . . mje J. 

Since m E J and m = (ml . . . mj)mj, , . . . mk, it follows that ml . . . mjl%Ym. Therefore, 

(m 1 . . . mj_l)pfj=a, and since (ml . . . mi_ I)cpfi = 1 for each i#j, we obtain lf = a. 

Now assume mLZ?m’E J with (J~)E mBflm’0. Then my,=m’cp, and m and m’ 

belong to the same Z-class, namely Rlf. Therefore, mZ’m’. Since p is not Ui-free, 

it follows that v, does not separate X-classes of M. Therefore, by (4.2), p is injective 

on X-classes of M. We may conclude that m = m’. Therefore, 6’ is injective on 

g-classes of M. 
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That 0 is primitive of type U, will now follow from the next proposition. 

Proposition 4.9. Let p : M-t N be a g-singular relation of monoids. If cp is either 
injective on 6tl-classes of M or injective on S?-classes of M, then 

K,E(~,). 

Proof. We shall assume that o, is injective on &?-classes of M and prove D, E (Ur). 

Since K, <D,, this establishes the assertion in this case. The g-class case then 

follows as a corollary. For, if a, is injective on g-classes of M, then cpe is injective 

on ,?A?-classes of Me. It follows from the first assertion that KvQ E (U,). But (U,) is 

closed under reversal, so using Proposition 1.6, we have K,=(K,,)@E(U~). 
Therefore, let us assume that cp is injective on %-classes of M. Theorem 2.9 states 

that we only need to show that the local monoids of D, belong to (U,). Monoids 

in (U,) are defined by the equations 

(4.13) x2=x, xy = yx. 

Hence, it suffices to show that every local monoid of D, satisfies (4.13). Let 

nL E N, and let (m, n), (m’, n’) E #a, with nLn = nL = nLn’. Then the functions 

[m, n], [m’, n’] : nLv-’ -+ nLp-’ 

where a[m,n] =am, must satisfy (4.13). In other words, we must establish 

(4.14) am2=am and amm’=am’m 

for all aEnLv-‘. 
We first note that if a,a’EnLp-’ and a, a’E M- J, then a = a’. For v, is injective 

on M- J and ap n a’p # 0. Second, if a E n,cp-’ and (m, n) E # cp with nLn = nL, then 

(4.15) Either am = a or a E J, am E B(J). 

For the proof, note that nL = nLn E (am)p, so ay, fl (am)cp # 0. If a EA(J), then since 

CJJ separates A(J) and J, am EA(J). Therefore a=am. If a belongs to the ideal B(J), 

then so does am, so again a= am. Last, if a E J, then either am E J or am E B(J). 
If am E J, then a.?%?am. Since v, is injective on X-classes, we have a=am. This 

establishes (4.15). 

We now establish (4.14). If a = am, then am = am’. Otherwise, am E B(J) in which 

case am2 does also. Since am,am2EnLqC’ nM- J, we conclude that am = am2 in 

all cases. 

If a = am = am’, then amm’=am’m. If a E J and am E B(J), then amm’e B(J). 
Either am’=a or am’E B(J). In either case, am’m E B(J). Since amm’,am’m E 
n,p-‘CTM- J, we obtain amm’=am’m in all cases. This establishes (4.14) and 

proves the assertion. 0 

With the conclusion of the proof of Proposition 4.9, we have also established 

Proposition 3.7 and hence, Theorem 3.1. 
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5. Kernel properties 

We now lift our cardinality restrictions, and again treat monoids and categories 

of arbitrary cardinality. We will not restrict our scope again. In this section we 

develop the relationship between the kernel and certain compositions of relations. 

Proposition 5.1. In the commuting diagram of relations 

of monoids, assume that 13 is injective. Then K, < Kp’. 

Proof. We show that 0 : M+ M’ induces a relational morphism 

8’: WV+K,f, 

nt9’=n on objects, 

(nr, (m, n), n~)B’= { [nL, (m’, n), nh]: m’E me}. 

of categories 

Since a, = Orp’, it follows that A49 =MBa,‘c M’p’. Thus the object function of 8’ is 

well defined. Let (m, n) E # p. Then n E my, = m&p’, so there exists m’E mtl such that 

(m’, n) E #p’. Therefore, 8’ on horn-sets is both well defined and fully defined. 

Straightforward calculations now show that 8 is a relational morphism. 

Composing q-l : K, -+ Wp with B’, we obtain the relational morphism 

+Y:K,4KQ,. 

Showing that q-‘O is injective on horn-sets of KV will establish the assertion. To 

this end, let (m, n), (H, ii) E W,(n, n’), and suppose there 

with 

exist m’Emi3 and rir’Er?iO 

lnL, (m: 4, 41= bb 0% A), 41 

in Kpf. It must be shown that (m,n)q = (Hz,ii)q. By (1.3), this equality is established 

by showing that m,mmk = mt,Frmk for all mL E nLv)-’ and rnk E r&v-‘. 
Let mL E n,cp-‘, and using the fact that v, = &p’, choose rn:E m,B so that 

nL E m;q’. Similarly, let rni E nip-‘, and choose rn[ E rnke so that nk E rngqf. Then 

rn:rn’rni E m,tk&n~8 C (mLmmk)e 
and 

rn~m’rn~ E m,emem~e c (m,mmk)O. 

However, since [nL, (m’, n), ni] = [n,, (fi’, ii), &] and because rn: E n,_lp-’ and 

m~En~pp’, we have m[m’mi = m:rii’mi. Therefore 

(m,mm#ln (m,mm#l f 0 
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and since 6 is injective, this implies that m,mm~=mLr?imk. Therefore, (m,n)q = 
(r?i, A)q, and K, < KV,. Cl 

Let 9,9’ : M+ N be relations. We write 9 c 9’ if m9 c m9’ for all m EM. 
Equivalently, 9 C_ 9’ iff #9 is a submonoid of # 9’. Evidently then, 9 c 9’ iff 

9-r c 9’-! 

Proposition 5.2. If 9,9’ : M+ N are relations of monoids and 9 c 9’, then 

K, < Kq,. 

Proof. Let (cx, # 9, fl) and (a’, # 9’, p’) be, respectively, the canonical factorizations 

of 9 and 9’, and let j : #a, + # cp’ be the inclusion morphism. Then 

/?=j/I’: #9+N. 

Since j is injective, we deduce from Proposition 5.1 that 

Ka< Ka,. 

The assertion now follows from Proposition 1.8. q 

As a dual result to Proposition 5.1, we present 

Proposition 5.3. In the commuting diagram of relations 

M 

N-N e 

of monoids, assume that B is injective. Then Krp <K,(. 

Proof. Let 9 denote 6-r : N+N’. Since 8 is an injective relation, 9 is a partial 

function and f+ c IN’. Therefore, the assumption 9=9’13 implies the containment 

99 c 9’. We show that 9 induces a morphism of categories 

9’: WV+ KV’, 

ny’= (n,ty, nRW) on objects, 

(nr, (m, n), &)w’= k_y/, (m, nw), dwl. 

Since 9 = 9’8, we see that Ma, c rg(t9) = dom 9. Therefore for each n E M9, we have 

0fntp ~M9ty c M9’. Thus 9’ is a well-defined function on objects of W,, , Let 

(nL, (m, n), nk) be an arrow of WV. Then my E m9ty c m9’, so (m, my) E # 9’. Since 

nLn =nt, we have nLiynty = nt ty; dually, na I,Y = nynk ty. This information shows 

that the horn-set functions of 9’ are well defined. This established, the fact that 9’ 

is a morphism follows easily. 
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Now composing q-l : Z$ + WV with I,Y’ results in a relational morphism 

r&:K,OK,s 

Showing that ~-‘I,v is injective on horn-sets of KP establishes the assertion. To do 

so, let (m, n), (m’, n’) E W,(n, n’) and suppose that (m, n)ty’= (m’, n’)ty’. We must 

show that (m, n)z;l= (m’, n’)q. Let mL E n,p-’ and rnk E n;qF’. Then 

mLEnLqF1= ~dyl’W1 = hW)V1 
t-1 

* 

Similarly, rnk E (nk y)q-‘. The assumption 

buy/, Cm, w), &y/l = bLw Cm’, n’v), &VI 

implies that m,mmk= m,m’mL. This in turn implies that (m,n)q = (m’,n’)v and 

establishes the assertion. 0 

Combining Propositions 5.1 and 5.3, we obtain 

Corollary 5.4. If 8 and 8’ are injective relations, then 

KB,,r < K,. 0 

Another useful corollary of Proposition 5.3 is the following: 

Proposition 5.5. Let v, : M-+ N be a relation of monoids and let 8 : N-+ N’ be a 
morphism. Then K, < Kqe. 

Proof. Let q’= @3. Then since 0 is a function, we have IN’ G 0K’. Therefore, 

V, c e76~e-~ = ple-1. 

Since 8-l is injective, we may apply Propositions 5.2 and 5.3 to obtain 

KP < K,tB-l < Kv,. 0 

6. The double semidirect product 

We introduce in this section a ‘two-sided’ version of the semidirect product of 

monoids, which we call the double semidirect product. 

Let Y and T be monoids. To aid notational clarity, we will write V additively and 

let 0 denote its identity; however, commutivity for V is not assumed. A double 
action of T on V is a function 

(6.1) TX Vx T+ V, (t, 0, t’) -+ lot’ 

satisfying the following conditions: 
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t(ol+ u2)t’= tult’+ fu*t’, f&&) = (flf*)U(f;t;), 
(6.2) 

101 =u, tot’= 0 

for all t, t’, tl, tZ, t;, ti E T and all u, ul, u2 E V. 

Given a double action of Ton V, the associated double semidirect product V** T 
is the set Vx T equipped with the multiplication rule 

(0, t)(u’, t’)= (lot’+ to/l, tt’). 

Conditions (6.2) guarantee that this product is associative and that V** T is a 

monoid with identity (41). Indeed, for associativity we have 

((0, t)(u’, t’))(u”, t”) =(lut’+ to/l, tt’)(u”, Y) 

= (l(lut’+ tu’l)t”+ tt’u”1, tt’t”) 

while 

(u, t)((u’, t’)(u”, Y))=(u, t)(lu’t”+ t’U”1, t/t”) 

=(lut’t”+ t(lu’t”+ t’u”l)l,tt’t”). 

Applying the first two conditions of (6.2) to these results shows that both computa- 

tions equal 

(lot/t”+ to/t”+ tt’u”1, tt’t”). 

A direct calculation using the last two conditions of (6.2) shows that (0,l) is the 

identity of V** T. Furthermore, if T and V are groups, then V** T is a group. The 

inverse of (u, t) is (-(t-‘ut-‘), t-l). 
Because of the rule 101 = u, we may simplify notation in certain case. The expres- 

sion to1 will usually be written to, and the expression 1 to will be replaced by to. With 

these conventions, the following one-sided version of conditions (6.2), as well as 

their duals, hold: 

t(u, + u2) = to1 + tu2, tl(t2u) = (tl t2hb 

lu=u, to=o. 

In addition, the relationship (tu)t’= t(ut’) holds. Thus a double action of T on V 
can be viewed as a left action and a right action of T on V which are associative. 

With this notational convention, the multiplication in the double semidirect 

product may be written 

(u, t)(u’, t’) = (ut’+ tu: tt’). 

It is also instructive to write out a product of n terms of V**T: 

(u~,t~)..*(u,,tn)=(U,(t2... &)+***+(t, . . . tk_I)U&+l . . . t,)+*** 

+(t, . . . tn-I)u,,tl **et,). 

If the double action of T on V does not depend on the right action, that is, 
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tot’= to Vt, t’E T and v E V, 

then the double action is a left action of Ton V, (t, v) -+ tv. In this case the double 

semidirect product is an ordinary semidirect product V* T. Dually, if the double 

action is a right action, then V** T is a reverse semidirect product I/*@ T. If the 

double action is the identity action, that is, tvt’= v for all t, C’E T and v E V, then 

the double semidirect product is the direct product Vx T. 

Therefore, every direct product, every semidirect product, and every reverse semi- 

direct product is a double semidirect product. There are double semidirect products 

that cannot be characterized as semidirect products. However, in the case when the 

right-hand term is a group, any double semidirect product of the form V**G is 

actually a semidirect product. 

Example 6.1. If G is a group, and there is a given double action of G on a monoid 

V, then the resulting product V** G is isomorphic to a semidirect product V* G. To 

show this, assume that a double action of G on V is given, and define a left action 

of G on V by 

Then (v, g) + (vg-‘, g) defines an isomorphism I/** G + V* G. 

Because the multiplication rule for the double semidirect product behaves like the 

direct product in the right-hand coordinate, the projection function rc : Vx T-r T 

is a morphism 

Z: V**T+T 

of monoids. The projection onto V does not enjoy this status. 

If either V or T is the trivial monoid, then there is only one possible double action 

of T on V. In these cases, we have 

(6.3) l**T=T and V**l=V. 

Both the injections 

a: V+ V**T, va = (v, l), 

/I: T-t V**T, tP=(Qt) 

are morphisms. Therefore 

(6.4) V< V-T and TX VW T. 

Given a double semidirect product V** T, we may define a double action of T@ 

on V@ by 

(t, v, t’) + t’vt. 

A routine calculation shows that with this double action, 

(6.5) I/Q..P’=(V**T)@. 
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The triple product (M, KN), introduced in [2, p. 1421, is a double semidirect 

product. In that definition there is given a left action of N on V and a right action 

of A4 on V, and these actions are associative. That is, 

(no)m = n(om). 

The underlying set of (M, V,N) is the direct product Mx VxN, and the multiplica- 

tion is given by 

(m, u, n)(m’, o’, n’) = (mm’, urn’+ no’, nn’). 

Using these two actions, we may define a double action of Mx N on V by 

(m, n)v(m’, n’) = (no)m’. 

This double action defines a double semidirect product V** (Mx N) which is easily 

seen to be isomorphic to the triple product (A4, V’,N). 

We now present the central result of this section, which details an important rela- 

tionship between the kernel and the double semidirect product. 

Let a, : M+ N be a relation of monoids, and let T be a monoid. Suppose there 

are double actions of Ton M and Ton N. This pair of actions is compatible with v, if 

(m,n)E#P * (tmt: tnt’) E #o, Vt, t’E T. 

In this situation, ~1: M-+ N induces a relation of monoids 

~**T:M**T-+N**T, (m, t)p** T= {(n, t): n E mv} 

as the reader may easily verify. 

Theorem 6.2. Let cp : M+ N be a relation of monoids, and let T be a monoid. Sup- 
pose there are double actions of T on M and T on N that are compatible with q~. 
Then 

K pt*T -Kv. 

Proof. Let aM:M-+M**Tbe the injection m-+(m,l), and let a,,,:N+N**Tbe 
defined similarly. Then we may write a,=aMy,** Tail. Since both a,,,, and ai’ are 

injective relations of monoids, it follows from Corollary 5.4 that Kq < Kv**T. 
For the opposite inequality, we let q : WpteT -+ K+,**T be the two-Stage COnStrUC- 

tion of Kvr*T. We will define a morphism 

6’: wv..~+Kp 

and then show that the relational morphism ~~‘8: KP*fT-+ K, is a division. 

Note that (M** T)a, ** T= Mu, x T; therefore, 

Obj(W,,,,)=(M~xT)x(M~xT). 

Define the object function 

e:Obj(W,,,T)-,Obj(K,), ((% CL)r @R, tR))8=(nLtRy tLnRh 
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Using the boldface notation for object pairs introduced in Section 1, we may rewrite 
the above by 

(n, t)B = (n,t,, t,npJ 

when we interpret (n,t) as ((n,, tL), (n,, ts)). This definition is well defined, for 
if n EM~) and t E T, then (m, n) E #v, for some m EM, and both (mt, nt) and 
(tm, tn) belong to #p. In particular, both nLtR and tLnR belong to Mrp, so 

@LtRv tLnR) E WW,). 

Define the horn-set functions by 

6 : wv**~((n, th b’, t’)) --f &(@LtR, tLnRh &.tk? ttnk)), 

(<m, t>, h t>)d= [nLtR$ (tLm& tLnt& ttnil. 

Note that (n,, t,)(n, t) = (nt, tt) and (nat tR) = (n, t)(n,& tk). Expanding these equa- 
tions, we obtain 

nt=nLt+tLn, nR = ntk + tni, 

t; = tLt, t,= tt;. 

It follows that 

and 
t,ntk + tlnk = tLntk + tLtnk = tL(ntk + tnk) = tLnR. 

These calculations show that 0 is well defined. 
The identity arrow at object (n, t) is { (0, l), (0, l)}, and 

((0, l), (0, l))e= bLtR, @LOtRy tLOfR), tLnR1 = bLtR, (0, oh tLnR1 

which is the identity arrow of Kq at object (n,t)e. 
Let 

{(m, t)(n, t)> : (n, 0 + (n; 0, ((m’, t’)(n’, t’)] : (n’, t’) -+ (n”,t”) 

be consecutive arrows in Wp_T. Then using tt= tLt and tb = t’tg, we have 

{(m, t)(n, t)}e{(m’, t’)(n’, t’)>e 

= [nLtR, (tLmtk, tLnt;(), ttnk][nttk, (ttm’ti, ttn’ti), tin;] 

= [nLtR, (tLmti + ttm’t:, tLntk + ttn’ti), tcni] 

= [nLtR, (tLmt’ti + tLtm’ti, tLnt’t$ + tLtn’t& t;ni] 

= [nLtR, (t#t’+ tm’)ti, t&t’+ tn’)ti), t[ni] 

= {(mt’+ tm’, tt’), (nt’+ tn’, tt’)}O 

= ({(m, t)(n, t)){(m: t’)(n’, tf)l)e. 

Therefore, 8 is a morphism of categories. 



The kernel of monoid morphisms 259 

To show that q-‘O:K,,,r OI$, is a division, it suffices to suppose that 

(6.6) {(~,~),(~,~)}~={(~:~‘),(~:~‘))~ 

where ((m, t), (n, t)> and {(m’, t’), (n’, t’)} are coterminal arrows belonging to 
W,,,r((n, t), (n’, t’)), and to show that 

(6.7) ML, Q(m, W&, &) = (ml_, k)(m’, f’)(mk, &) 

for all rn,_~n~~~-’ and rnk~&y,-‘. Equation (6.7) may be rewritten 

[n,t,, (I,rn& t,n&), t;n;] = [n,ta, &m’t;, tLn’t;), &&I 

and is satisfied if and only if 

(6.8) ~+ttLmt~+~‘=~~tfLrn’t~+~’ 

for all r?ii((nLt&p -’ and m’E(ttn&-‘. 
The left-hand side of (6.7) expands to 

(m,ttk + tLmtb + t,tmk, tLtti) 

and the right-hand side can be written 

(mLt’t6 + tLm’tk + t,t’mi, tLt’tk). 

Using the relationships ttk= tR= t’tk and t,t = tt= t,_t’, equation (6.7) can be 
established by showing 

(6.9) mLtR + tLmtk + ttrnk = mLt,+ tLm’tk + ttmk. 

But (mL, nL) and (mk, n& belong to # p, and since CJI is compatible with the actions 
of T on M and N, we have (m,t,,n,t,) E #IJJ and (ttm;, tin&E #p. Therefore, 
(6.9) is implied by (6.8), and 

K c,otr~<&. 

The assertion is proven. 0 

A derived category version of Theorem 6.2 is also valid, but it was not discovered 
in time for inclusion in [8]. For completeness, this subject is discussed briefly in 
Appendix B. 

Proposition 6.3. Let V** T be a double semidirect product, and let 71: I/** T-+ T be 
the projection morphism. Then 

K,- V. 

Proof. The projection n : V** T+ T is easily seen to coincide with the morphism 

BIGHT: V**T+l**T 
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where p : I/+ 1 is the collapsing morphism. By Theorem 6.2 and by Proposition 1.3, 
we obtain 

Proposition 6.4. Let 8 :M-+ V**N be an injective relation of monoids, and let 
v, = tk : M+ N be the relation obtained by composing 0 with the projection. Then 

KP’ V. 

Proof. Consider the commuting diagram of monoid relations 

e 
M- V**N 

Since 0: M-t V**N is injective, we may apply Proposition 5.1 to obtain K+, <K,. 
Proposition 6.3 then yields the assertion. 0 

7. The block product 

We now define the block product of two monoids; the block product is a par- 
ticular double semidirect product. The block product contains, as we shall see, all 
double semidirect products as submonoids. This product stands in the same rela- 
tionship to the double semidirect product as the wreath product does to the semi- 
direct product. 

Let V and T be monoids. We will write V additively with identity 0, although 
commutivity for V is not assumed. By VITx ’ we mean the monoid of all functions 
from TX T to V equipped with coordinatewise multiplication. VTXT will also be 
denoted additively; the identity is the function fO, whose value is always 0. VTXT 
is isomorphic to a direct product of card TX T copies of V. 

There is a natural double action of T on VTXT defined as follows: 

TX VT’ Tx T-+ VTx T, 

(7.1) C&f, 0 + i&f, fl, 

fJf,f, f’lh.= (fLfl_fWRh 

The notation [t,f, t’] is used to denote the result of the double action. This is done 
to avoid confusion with the notation tft’, which is the result of evaluating f at (t, t’). 

Thus, [t,f, t’] E VT’ ‘, while tft’g V. 
The reader may readily verify that the action (7.1) satisfies conditions (6.2). These 

conditions, translated to this setting, are 
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It, fl +h t’l = [&.I-,, t/1+ tt, f2, U, [tl, [fzrf, &I, 0 = Prtz,A @;I, 
(7.2) 

[l,f, 11 =f, It, fo, f’l =fo 

for all t, t’, tr, fZ, t;, t; E T and f, f,, f2 E VTx T. 

The block product Vo T of monoids I/ and T is the double semidirect product 
VTX r** T associated with the double action (7.1). Therefore, VU T is the monoid 
with underlying set YTX ‘x T and product 

(f, 0(f: t’) = ([l,J t’l + P,f: 11, tt’). 

We now verify our claim that Vo T contains every double semidirect product 
V** T. For any given double semidirect product V** T, define the function 

8: V**T-+ Vo T, (US tw = (f,, t), t,f&=t,l$. 

Since If,1 = lo 1 = u, we see that 0 is an injective function. Furthermore, 0 maps the 
identity (0,l) to the identity (fO, 1) of Vo T. Lastly, 

(0, t)Nu’, V3= (f,, t)(f,,, t’) = (Lf”, t’l+ V,f”? 11, tt’) 

= (f,,,, hJ’3 tt’) = ((u, t)(o’, t’))e. 

These observations combine to prove the following proposition: 

Proposition 7.1. Every double semidirect product V** T is (isomorphic to) a sub- 
monoid of Vu T. Cl 

We list additional properties of the block product. The first three are inherited 
from corresponding properties, (6.3)-(6.Q of the double semidirect product. 

(7.3) loT=T and Vol=V. 

(7.4) V< VoT and T< VoT. 

(7.5) Ven Te=(Vo T)@. 

The remaining properties, listed below, are followed by brief indications of their 
proofs. 

(7.6) V< V’, T< T’ =$ Vo T< V’o T’. 

(7.7) VoT< Vo T. 

(7.8) I/o, T< Vu T. 

For (7.6), let q~: V< V’ and 8: T< T’ be the given divisions. Define a relation 
r,u: Vu T+ V’ q T’ by the rule 

(_K t)v = {(h, t’) E V’ •I T’: t’E t6, t;ht;, E (tLftR)p Vt; E tLO, t; E t,O}. 

A routine calculation shows that w is a division. 
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For (7.7), define 

8: VoT-, VoT, (f,t)@=(J:t), tp= tf 

and show that 8 is an injective morphism. A dual argument proves (7.8). Alternately, 
(7.8) may be established by using (7.7), the isomorphism VO, T=(Veo Te)e and 
(7.5). For then 

Vo,T=(Ve.Te)e<(VeoTe)e=VoT. 

Let v, : M+ N be a relation of monoids and let T be a monoid. Then qr induces 
a relation of monoids 

(7.9) poT:MoT+NoT, (f, tk •I T= {(h, t): tLhtRE (t&s&D) 

as can be verified by direct computation. 

Proposition 1.2. Let ~1: M+ N be a relation of monoids, and let T be a monoid. 
Then 

K Coo~-(KCp)TXT. 

Proof. The relation v, : M+ N induces the product relation 

v, 
TxT :MTxT+NTxT, fq~~~~={h~N~~~: tht’E(tft’)cp}. 

We claim that a, Tx T is compatible with the double actions (7.1) of Ton MTX T and 
N Tx T used to define the block product. To show this, let (f, h) E #a, Tx T. We need 
to verify that 

(If,_, f, tal, VL, h, tR1) E #a, Tx T 

for all t,, tR E T. This can be seen by the calculation 

f[&, h, fdf’= WdhW’) E (Wd.fVrtt’))v = WL, f, t,lf)v. 

Therefore, qr Tx T induces a relation of monoids 

(u, TxT),,T:MTXT,,T+NTXT,,T 

as defined in Section 6. This is exactly relation (7.9); that is to say, (pTxT)** T= 
q~ q T. 

We now apply Theorem 6.2 to obtain the assertion. Theorem 6.2 states that 

K (OUT - Kc,prj. 

However, by Proposition 1.7, 

K~T~=(K~)=~~. 

The assertion follows from these two statements. q 

Since Vo T is a double semidirect product, we may speak of the projection 
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morphism 
n:VnT+T, (f, t)rr = t. 

This projection may also be described as the induced morphism 

~IDT:VOT-+~OT=T 

where v, : V+ 1 is the collapsing morphism. Since I$= V by Proposition 1.3, this 
description of the projection leads to the following result: 

Proposition 7.3. Let n : Vo T+ T be the proj’ection morphism. Then 

K,-P? 0 

Proposition 7.3 can also be established by noting that Vo Tis a double semidirect 
product V TX ’ **T, and appealing to Propositions 6.3. 

The following theorem states the principal relationships between the kernel and 
the block product: 

Theorem 1.4 (Kernel Theorem). (a) Let a, : M+ N be a relation of monoids, and let 
V be a monoid satisfying K, < V. Then there is an injective relation of monoids 

B:M+ VoN 

satisfying 0n = q. In particular, if Q is fully defined, then 8 is a division. 
(b) Let 8 : M+ Vo N be an injective relation of monoids, and let 

(P=eR:M+N 

be the relation obtained by composing 0 with the projection. Then 

K,< VNxN. 

Proof. (a) The last statement follows from the first because 0 and cp have the same 
domain. Since 9 is fully defined, 0 is fully defined and injective, that is, 0 is a divi- 
sion. We therefore prove the first statement. 

Let w : K, < V be the given division. For each pair (m, n) E # 9, define the set of 
functions 

F(m,n)={fE VNxN: nlfn2E[nl,(m,n),n,lW, nl,n2EM9). 

Note that F(m, n) is always non-empty and that fO E F(l, 1). 
Define the relation 

e:kf-+ VoN, me = {(f, n): n E my, and f E F(m, n)}. 

Because F(m, n) f 0, it follows easily that bp = Brc. We will show that 0 is an injective 
relation of monoids. 

We first show that B is a relation of monoids. Since fO E F(l, l), we see that 
(fO, 1) E 18. Let (f, n) E me and (f: n’) E m’8, and consider the product 
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(f,n)(f:n’)=([l,~f;‘l+[n,f:ll,nn’). 

Now f E F(m,n) and f’~F(m’,n’), so for every n,,n2eMyl we have 

Q[Lf,n’l+ f&f: ll)n2=n,f(n’n2)+(n,nlf’n2 

E [4,07bnhn’n2lw+ [Qn,w,n’),n2lw 

c In,, (mm’, nn’), &IV/. 

The last inclusion follows because [nl, (m,n),n’n2] and [n1n,(m’,n’),n2] are con- 
secutive arrows of K,. It follows that 

[l,Jf;‘]+[n,f:l]~F(mm’,nn’) 
and 

(f, n)(f: n’) E (mm’M. 

Therefore, 8:M-t YoN is a relation of monoids. 
It remains to show that 0 is injective. Let (f, n) belong to both mt? and m’l3. Then 

for each n,, n2 EMU), n, fn2 is an element of both [n,, (m,n),n,]tp and [n,, (m’, n), n2]ty. 
However, IC/ is injective on the horn-sets of K,, so we conclude that 

[n,,(m,n),n21=[nl,(m:n),n21 Vnl,n2~M9. 

In particular, this equation holds when nl = 1 = n2. Therefore by Lemma 1.1(a), 
m = m’. This shows that 0 is injective and establishes part (a) of the theorem. 

(b) Let 8: M-t Vo N be an injective relation of monoids, and consider the 
commuting diagram 

Since 8 is injective, we may apply Proposition 5.1 to obtain K, < K, . Proposition 
7.3 then yields the assertion. 0 

We wish to show here that in part (a) of the Kernel Theorem, the block product 
cannot be replaced by a double semidirect product. For consider a surjective mor- 
phism a, : G + H, where G and H are finite groups. By Proposition 1.4, Kv - ker p. 
If some double semidirect product sufficed for Theorem 7.4(a), then we could write 

G<ker(o**H. 

But both these groups have the same cardinality, so they must be isomorphic. 
Furthermore, by Example 6.1, ker v, **H is isomorphic to a semidirect product 
ker v, *H. This shows that G is a split extension. But not all groups are split exten- 
sions, for example, &. Therefore, the block product cannot be replaced by a 
double semidirect product in the Kernel Theorem. 
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We may now apply the Kernel Theorem to relations of finite monoids. 

Corollary 7.5. Let Q be a finite simple monoid and let CJI : M-t N be a finite, fully 
defined relation that is either locally trivial or primitive of type Q. Then for some 
finite monoid VE(Q), we have 

M< VoN. 

Proof. If v, is primitive of type Q, then &E(Q). If p is locally trivial, then 
K,eJl. But &l G (Q) by [S, Theorem 8.11, so again Kv E (Q). Thus in both cases, 
K, < V for some finite monoid VE (Q). The assertion now follows from part (a) of 
Theorem 7.4. 0 

Proposition 7.6. (a) Let ye : M-+ N be a finite, fully defined relation that is aperiodic. 
Then there exists a division 

M< V,o(... q (V,o(V~oN))~~~) 

where V,, . . . , V,, kr0, are finite monoids in (U,). 
(b) Let cp : M+ N be a finite, fully defined relation that is U,-free. Then there 

exists a division 

M< Vko(“. q (V2o(V, ON))...) 

where V,, . . . , V, , kz 0, are finite groups. 
(c) Let a, : M+ N be a finite, fully defined relation that is both aperiodic and 

U,-free. Then for any simple monoid Q, there exists a division 

M< V,o(... q (V,o(V, ON))...) 

where V,, . . . , V,, k20, are finite monoids in (Q). 

Proof. (a) Let qr : M+ N be an aperiodic, fully defined relation. Then by Corollary 
3.4, v, has a decomposition qr = vk . . . cpl, where each factor pi is either locally trivial 
or is primitive of type U,. Therefore, as in the proof of Corollary 7.5, the kernel 
of each factor belongs to (U,). Furthermore, since qr is fully defined, each factor 
pi is fully defined. This allows us to iteratively apply Corollary 7.5. 

Let V)k : M+ Mk . Then by Corollary 7.5 we have M < Vk 0 Mk, for some monoid 
v,E(ul).LetCOk-l:Mk~Mk_,.ThenMk< V&in!&i.Using(7.6),WemayWrite 

M< V,o(V,_, q Mk-1). 

The assertion of (a) now follows by iteration. Parts (b) and (c) are proved in a 
similar manner. 0 

The monoids V,, . . . , vk of Proposition 7.6 cannot be specified in advance. Only 
the varieties they belong to can be predicted. This means that the proper setting for 
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Proposition 7.6 is varieties, rather than individual monoids. Part 2 of this paper, 

mentioned in the introduction, treats the results of this paper in a variety setting. 

Appendix A. Finite semigroups and monoids 

Properties of finite semigroups that are not valid in the infinite case are used 

throughout the paper without much comment. These facts are briefly outlined 

below. 

(1) Every element of a finite semigroup, when raised to a sufficiently high power, 

is an idempotent. 

(2) Let A4 be a monoid. If for each m EM, mk = 1 for some kr 1, then A4 is a 

group. 

(3) Every monoid that is not a group contains a copy of the simple monoid 

U, = (1, O}. For if A4 is not a group, then by (2) there exists an element m E A4 and 

some kz 1 such that mk is an idempotent not equal to 1. Then { 1, mk} = U,. 
(4) Let v, : S -+ T be a morphism, and let T’ be a monoid (group) in T. Let S’ be 

a subsemigroup of S of the smallest possible cardinality satisfying S’o, = T’. Then 

S’ is a monoid (group) in S. 

(5) Let a, b E S. If a? b in the Z-ordering of S and a$b, then aS?b. Dually, if 

a? b in the g-ordering of S and a,$b, then a&?b. 
(6) Let G be a maximal group in S with idempotent e, and let J be the &?-class 

of S containing G. The eSenJ=G. 

(7) Let A4 be a monoid with maximal subgroup G. Then M- G is an ideal of M. 

For let J be the g-class of A4 containing G. Then every element of M is either in 

J or is strictly below J in the g-class ordering. Thus M-J is an ideal. But by apply- 

ing (6) with e= 1, we obtain J=Mfl J= G. Therefore, M- G is an ideal of M. 

Proofs of these facts can be found throughout the literature. For example (l)-(4) 

can be found in [2], while (5) and (6) appear in [7]. See also [l]. 

Appendix B. The derived category and the semidirect product 

Theorem 6.2 states a fundamental relationship between the kernel and the double 

semidirect product. The derived category and the semidirect product enjoy a similar 

relationship. 

Theorem B.l. Let (0 : M-t N be a relation of monoids, and let T be a monoid. Sup- 
pose there are left actions of T on A4 and Ton N that are compatible with v. Then 

The notions of compatible action and the definition of 
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a,*T:M*T-+N*T 

are exactly as defined in Section 6. The proof of Theorem B.l can be obtained by 

appropriately simplifying the proof of Theorem 6.2. Analogs of Propositions 6.3 

and 6.4 are then easily obtained. 

Proposition B.2. Let V*N be a semidirect product, and let n : V*N-+ N be the 
projection morphism. Then D,- V. 0 

Proposition B.3. Let 8: M+ V*N be an injective relation of monoids, and let 
v, = 07~ : M-t N be the relation obtained by composing 0 with the projection. Then 
DO< V. q 

Theorem B. 1 was discovered too late to be included in [8]. However, key results 

in [8] can now be seen as corollaries of Theorem B. 1. We briefly discuss these 

results. 

First, we may define the wreath product version of (7.9). Let ~1: M+ N be a 

relation of monoids, and let T be a monoid. Then v, induces a relation of monoids 

(B. 1) cpoT:MoT+NoT, (f, t)cpo T= {(h, t): toh E h,f )ul V’t, E T) 

as can be verified by direct computation. Then, following the proof of Proposition 

7.3 and using Theorem B. 1 in place of Theorem 6.2 leads us to the following result: 

Proposition B.4. Let p : M+ N be a relation of monoids, and let T be a monoid. 
Then 

D ,or-CD& 0 

Propositions 7.5 and 7.6 are corollaries of Proposition 7.3. The corresponding 

results for the wreath product and the derived category appear in [8]. They are 

Proposition B.5 (Proposition 5.1 of [8]). Let 71: Vo N-+ N be the projection mor- 
phism. Then D,- VN. Cl 

Proposition B.6 (Theorem 5.2(b) of [8]). Let f3 : M-+ VoN be an injective relation 
of monoids, and let q~ = Brt : M-+ N be the relation obtained by composing 8 with 
the projection. Then D, < VN. 0 
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